Changes in thymus size, cellularity and relation between thymocyte subpopulations in young adult rats induced by Somatostatin-14
Abstract The role of somatostatin on inhibition of both normal and tumor cell cycle, secretion of endocrine and exocrine cells, as well as induction apoptosis is well documented. However, its effect on T cell development and thymic structure is not fully clarified. In order to investigate the influe...
Gespeichert in:
Veröffentlicht in: | Neuropeptides (Edinburgh) 2007-12, Vol.41 (6), p.485-493 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The role of somatostatin on inhibition of both normal and tumor cell cycle, secretion of endocrine and exocrine cells, as well as induction apoptosis is well documented. However, its effect on T cell development and thymic structure is not fully clarified. In order to investigate the influence of somatostatin in vivo on the thymus structure and T cell development, the young adult Albino Oxford male rats were intracerebroventriculary treated with somatostatin-14. We examined the thymus compartments and its cellularity, through assessment of morphometric parameters by stereological method, and the relation between thymocytes subpopulations, over expression of CD4, CD8 and T-cell receptor (TCR) αβ by flow cytometry. Additionally, we also determined the body and thymus weight of the rats, during the first three months of life, to define the time of SRIH-14 application. A decrease of relative thymus weight from the fourth weeks of postnatal life, and an unchanged relative thymus weight obtained in treated group indicates that SRIH-14 in young adult rats inhibits growth of whole organism, not only thymus. The changes in the absolute number and numerical density of cortical thymocytes indicate that SRIH-14 alters the true lymphoid tissue. SRIH-14 changes relation between thymocyte subsets, increase number of CD4− CD8− TCRαβ− and CD4− CD8+ TCRαβhi thymocyte subsets as well as the CD4− CD8− TCRαβlow/hi thymocytes, while decrease number of CD4+ CD8+ TCRαβ−/low/hi thymocyte subsets. These results indicate that somatostatin-14 is not involved in the control of the physiologic involution of the thymus, although induces thymic weight loss through the reduction of true lymphoid tissue. In addition, changes in frequency of thymocyte subpopulations, especially immature cells, indicate that SRIH-14 modulates thymocytes development and maturation. |
---|---|
ISSN: | 0143-4179 1532-2785 |
DOI: | 10.1016/j.npep.2007.06.003 |