Umbilical Cord Blood–derived Progenitor Cells Enhance Muscle Regeneration in Mouse Hindlimb Ischemia Model
Progenitor cell therapy is a potential new treatment option for ischemic conditions in the myocardium and skeletal muscles. However, it remains unclear whether umbilical cord blood (UCB)-derived progenitor cells can provide therapeutic effects in ischemic muscles and whether ex vivo gene transfer ca...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2007-12, Vol.15 (12), p.2172-2177 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Progenitor cell therapy is a potential new treatment option for ischemic conditions in the myocardium and skeletal muscles. However, it remains unclear whether umbilical cord blood (UCB)-derived progenitor cells can provide therapeutic effects in ischemic muscles and whether ex vivo gene transfer can be used for improving the effect. In this study, the use of a lentiviral vector led to efficient transduction of both UCB-derived hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Our method resulted in a long-term transgene expression and did not alter the differentiation potential of either HSCs or MSCs. In addition, we studied the therapeutic potential of CD133+ and MSC progenitor cells transduced ex vivo with lentiviruses encoding the mature form of vascular endothelial growth factor D (VEGF-DΔNΔC) or the enhanced green fluorescent protein (eGFP) marker gene in a nude mouse model of skeletal muscle ischemia. Progenitor cells enhanced the regeneration of ischemic muscles without a detectable long-term engraftment of either CD133+ or MSC progenitor cells. Our results show that, rather than directly participating in angiogenesis or skeletal myogenesis, UCB-derived progenitor cells indirectly enhance the regenerative capacity of skeletal muscle after acute ischemic injury. However, VEGF-D gene transfer of progenitor cells did not improve the therapeutic effect in ischemic muscles. |
---|---|
ISSN: | 1525-0016 1525-0024 |
DOI: | 10.1038/sj.mt.6300302 |