Hexafluoroantimony(V) salts of the cationic Ti(IV) fluoride non metallocene complexes [TiF3(MeCN)3]+ and [TiF2L]2+ (L = 15-Crown-5 and 18-Crown-6). Preparation, characterization and thermodynamic stability

The cationic titanium fluoride containing complexes [fac-TiF3(MeCN)3][SbF6].MeCN (1), [trans-TiF2(15-Crown-5)][SbF6]2(2) and [trans-TiF2(18-Crown-6)][SbF6]2(2), were prepared by the reaction of TiF4, the molecular ligand and SbF5 in MeCN. Complexes 1-3 were characterized by X-ray single crystal anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2005-09 (18), p.3039-3050
Hauptverfasser: Decken, Andreas, Ilyin, Evgeny G, Brooke Jenkins, H Donald, Nikiforov, Grigori B, Passmore, Jack
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cationic titanium fluoride containing complexes [fac-TiF3(MeCN)3][SbF6].MeCN (1), [trans-TiF2(15-Crown-5)][SbF6]2(2) and [trans-TiF2(18-Crown-6)][SbF6]2(2), were prepared by the reaction of TiF4, the molecular ligand and SbF5 in MeCN. Complexes 1-3 were characterized by X-ray single crystal analysis, elemental analysis, IR, NMR and mass spectroscopy. Titanium tetrafluoride reacts with the SbF5 in SO2 with the formation of fac-[TiF3(SO2)3]+, detected by 19F NMR. Application of the volume-based approach to thermodynamics (VBT) offers a means, for the first time, of exploring the energetics surrounding these materials and in the thermodynamic section a discussion of this new approach is provided. It emerges that the basis of the thermodynamic driving force of formation of [TiF3L3][SbF6](s) salts, that enforces the unfavourable [DeltaH degrees =+ 237 (+/-20) kJ mol(-1)] fluoride ion transfer from the Lewis acid TiF4(s) to SbF5(l) to give the hypothetical [TiF3]+[SbF6]-(s), is the higher Ti-L (L = ligand) bond energy in the cationic complexes [TiF3L3]+ as compared to that in the molecular adducts TiF4L2(s) and SbF5L(s) so giving rise to larger enthalpies of complexation of [TiF3]+(g) by 3L(g) compared to those for complexation of TiF4(g) by 2L(g) and SbF5(g) by 1L(g). Formation of the trans-[TiF2(15-Crown-5)]2+ and trans-[TiF2(18-Crown-6)]2+ is accounted for the stabilization of [TiF2]2+ cation by the five donor acceptor Ti-O contacts and the accompanying positive charge delocalization. Cationic titanium(IV) complexes fac-[TiF3MeCN)3-nLn]+(n= 0-3) and cis-[TiF318-Crown-6)]+, trans-[TiF2(Crown)]2+(Crown = 15-Crown-5 and 18-Crown-6) were obtained in MeCN solution by the reaction of fac-[TiF3(MeCN)3]+ and L = Et2, THF, H2 or crown ethers. Complexes fac-[TiF3(MeCN)3-nLn][SbF6] L = Et2, THF, H2O, crown ethers are unstable in MeCN solution and slowly decompose giving molecular complexes cis-TiF4L2, cis-TiF4(Crown), SbF5L, titanium oxofluoride and alkoxide complexes. The structure of the fac-[TiF3(MeCN)3]+ is similar to the fac-[TiCl3(MeCN)3]+ and the complexes trans-[TiF2L]2+ L = 15-Crown-5, 18-Crown-6 have very similar geometries to that of trans-[TiCl2(15-Crown-5)]+ showing that the essential features of coordination are the same for the cationic titanium chloride and fluoride complexes with MeCN and 15-Crown-5, 18-Crown-6.
ISSN:1477-9226
1477-9234
DOI:10.1039/b500993f