Gonadotropin-Releasing Hormone Induction of Extracellular-Signal Regulated Kinase Is Blocked by Inhibition of Calmodulin

Our previous studies demonstrate that GnRH-induced ERK activation required influx of extracellular Ca2+ in αT3-1 and rat pituitary cells. In the present studies, we examined the hypothesis that calmodulin (Cam) plays a fundamental role in mediating the effects of Ca2+ on ERK activation. Cam inhibiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular endocrinology (Baltimore, Md.) Md.), 2005-09, Vol.19 (9), p.2412-2423
Hauptverfasser: Roberson, Mark S, Bliss, Stuart P, Xie, Jianjun, Navratil, Amy M, Farmerie, Todd A, Wolfe, Michael W, Clay, Colin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous studies demonstrate that GnRH-induced ERK activation required influx of extracellular Ca2+ in αT3-1 and rat pituitary cells. In the present studies, we examined the hypothesis that calmodulin (Cam) plays a fundamental role in mediating the effects of Ca2+ on ERK activation. Cam inhibition using W7 was sufficient to block GnRH-induced reporter gene activity for the c-Fos, murine glycoprotein hormone α-subunit, and MAPK phosphatase (MKP)-2 promoters, all shown to require ERK activation. Inhibition of Cam (using a dominant negative) was sufficient to block GnRH-induced ERK but not c-Jun N-terminal kinase activity activation. The Cam-dependent protein kinase (CamK) II inhibitor KN62 did not recapitulate these findings. GnRH-induced phosphorylation of MAPK/ERK kinase 1 and c-Raf kinase was blocked by Cam inhibition, whereas activity of phospholipase C was unaffected, suggesting that Ca2+/Cam modulation of the ERK cascade potentially at the level of c-Raf kinase. Enrichment of Cam-interacting proteins using a Cam agarose column revealed that c-Raf kinase forms a complex with Cam. Reconstitution studies reveal that recombinant c-Raf kinase can associate directly with Cam in a Ca2+-dependent manner and this interaction is reduced in vitro by addition of W7. Cam was localized in lipid rafts consistent with the formation of a Ca2+-sensitive signaling platform including the GnRH receptor and c-Raf kinase. These data support the conclusion that Cam may have a critical role as a Ca2+ sensor in specifically linking Ca2+ flux with ERK activation within the GnRH signaling pathway.
ISSN:0888-8809
1944-9917
DOI:10.1210/me.2005-0094