Naïve Bayes for microRNA target predictions—machine learning for microRNA targets

Motivation: Most computational methodologies for miRNA:mRNA target gene prediction use the seed segment of the miRNA and require cross-species sequence conservation in this region of the mRNA target. Methods that do not rely on conservation generate numbers of predictions, which are too large to val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2007-11, Vol.23 (22), p.2987-2992
Hauptverfasser: Yousef, Malik, Jung, Segun, Kossenkov, Andrew V., Showe, Louise C., Showe, Michael K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: Most computational methodologies for miRNA:mRNA target gene prediction use the seed segment of the miRNA and require cross-species sequence conservation in this region of the mRNA target. Methods that do not rely on conservation generate numbers of predictions, which are too large to validate. We describe a target prediction method (NBmiRTar) that does not require sequence conservation, using instead, machine learning by a naïve Bayes classifier. It generates a model from sequence and miRNA:mRNA duplex information from validated targets and artificially generated negative examples. Both the ‘seed’ and ‘out-seed’ segments of the miRNA:mRNA duplex are used for target identification. Results: The application of machine-learning techniques to the features we have used is a useful and general approach for microRNA target gene prediction. Our technique produces fewer false positive predictions and fewer target candidates to be tested. It exhibits higher sensitivity and specificity than algorithms that rely on conserved genomic regions to decrease false positive predictions. Availability: The NBmiRTar program is available at http://wotan.wistar.upenn.edu/NBmiRTar/ Contact: yousef@wistar.org Supplementary information: http://wotan.wistar.upenn.edu/NBmiRTar/
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btm484