Modifying effects of fermented brown rice on fecal microbiota in rats

Brown rice fermented by Aspergillus oryzae (FBRA) is a fiber-rich food. Effects of dietary administration of FBRA on rat fecal microbiota composition were examined. Male Wistar rats were fed a basal diet or a 5% FBRA- or 10% FBRA-containing diet, and fecal microbiota was analyzed by culture and term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anaerobe 2007-10, Vol.13 (5), p.220-227
Hauptverfasser: Kataoka, Keiko, Kibe, Ryoko, Kuwahara, Tomomi, Hagiwara, Mari, Arimochi, Hideki, Iwasaki, Teruaki, Benno, Yoshimi, Ohnishi, Yoshinari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brown rice fermented by Aspergillus oryzae (FBRA) is a fiber-rich food. Effects of dietary administration of FBRA on rat fecal microbiota composition were examined. Male Wistar rats were fed a basal diet or a 5% FBRA- or 10% FBRA-containing diet, and fecal microbiota was analyzed by culture and terminal-restriction fragment length polymorphism (T-RFLP) analysis. The viable cell number of lactobacilli significantly increased after feeding 10% FBRA diet for 3 weeks compared with that in the basal diet group and that in the same group at the beginning of the experiment (day 0). An increase in the viable cell number of lactobacilli was also observed after feeding 10% FBRA for 12 weeks compared with the effect of a basal diet. T-RFLP analysis showed an increase in the percentage of lactobacilli cells in feces of rats fed 10% FBRA for 14 weeks. Lactobacilli strains isolated from rat feces were divided into six types based on their randomly amplified polymorphic DNA (RAPD) patterns, and they were identified as Lactobacillus reuteri, L. intestinalis and lactobacilli species based on homology of the partial sequence of 16S rDNA. FBRA contains lactic acid bacteria, but their RAPD patterns and identified species were different from those in rat feces. These results indicated that dietary FBRA increases the number of lactobacilli species already resident in the rat intestine.
ISSN:1075-9964
1095-8274
DOI:10.1016/j.anaerobe.2007.07.001