A Novel Viral System for Generating Antigen-Specific T Cells

Dendritic cell (DC)-based vaccines are increasingly used for the treatment of patients with malignancies. Although these vaccines are typically safe, consistent and lasting generation of tumor-specific immunity has been rarely demonstrated. Improved methods for delivering tumor Ags to DCs and approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2005-09, Vol.175 (5), p.3431-3438
Hauptverfasser: Moran, Timothy P, Collier, Martha, McKinnon, Karen P, Davis, Nancy L, Johnston, Robert E, Serody, Jonathan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dendritic cell (DC)-based vaccines are increasingly used for the treatment of patients with malignancies. Although these vaccines are typically safe, consistent and lasting generation of tumor-specific immunity has been rarely demonstrated. Improved methods for delivering tumor Ags to DCs and approaches for overcoming tolerance or immune suppression to self-Ags are critical for improving immunotherapy. Viral vectors may address both of these issues, as they can be used to deliver intact tumor Ags to DCs, and have been shown to inhibit the suppression mediated by CD4+CD25+ regulatory T cells. We have evaluated the potential use of Venezuelan equine encephalitis virus replicon particles (VRPs) for in vitro Ag delivery to human monocyte-derived DCs. VRPs efficiently transduced immature human DCs in vitro, with approximately 50% of immature DCs expressing a vector-driven Ag at 12 h postinfection. VRP infection of immature DCs was superior to TNF-alpha treatment at inducing phenotypic maturation of DCs, and was comparable to LPS stimulation. Additionally, VRP-infected DC cultures secreted substantial amounts of the proinflammatory cytokines IL-6, TNF-alpha, and IFN-alpha. Finally, DCs transduced with a VRP encoding the influenza matrix protein (FMP) stimulated 50% greater expansion of FMP-specific CD8+ CTL when compared with TNF-alpha-matured DCs pulsed with an HLA-A*0201-restricted FMP peptide. Thus, VRPs can be used to deliver Ags to DCs resulting in potent stimulation of Ag-specific CTL. These findings provide the rationale for future studies evaluating the efficacy of VRP-transduced DCs for tumor immunotherapy.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.175.5.3431