Dissociable memory effects after medial thalamus lesions in the rat

Variable neuropathology in cases of diencephalic amnesia has led to uncertainty in identifying key thalamic nuclei and their potential role in learning and memory. Based on the principal neural connections of the medial thalamus, the current study tested the hypothesis that different aggregates of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2005-08, Vol.22 (4), p.973-985
Hauptverfasser: Mitchell, Anna S., Dalrymple-Alford, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variable neuropathology in cases of diencephalic amnesia has led to uncertainty in identifying key thalamic nuclei and their potential role in learning and memory. Based on the principal neural connections of the medial thalamus, the current study tested the hypothesis that different aggregates of thalamic nuclei contribute to separate memory systems. Lesions of the anterior thalamic aggregate (AT), which comprises the anterodorsal, anteromedial and anteroventral nuclei produced substantial deficits in both working and reference spatial memory in a radial arm maze task in rats, supporting the view that the AT is an integral part of a hippocampal memory system. Lesions to the lateral thalamic aggregate (LT), which comprises the intralaminar nuclei (centrolateral, paracentral and rostral central medial nuclei) and lateral mediodorsal thalamic nuclei (lateral and paralamellar nuclei) produced a mild working memory impairment only, while lesions to the posteromedial thalamic aggregate (MT), which comprises the central and medial mediodorsal thalamic nuclei and the intermediodorsal nucleus had no effect on radial arm maze performance. In contrast, only MT lesions impaired learning associated with memory for reward value, consistent with the idea that the MT contributes to an amygdala memory system. Compared with chance discrimination, the control and AT groups, but not MT or LT groups, showed evidence for temporal order memory for two recently presented objects; all groups showed intact object recognition for novel vs. familiar objects. These new dissociations show that different medial thalamic aggregates participate in multiple memory systems and reinforce the idea that memory deficits in diencephalic amnesics may vary as a function of the relative involvement of different thalamic regions.
ISSN:0953-816X
1460-9568
DOI:10.1111/j.1460-9568.2005.04199.x