Photodissociation of HI and DI: testing models for electronic structure via polarization of atomic photofragments

The photodissociation dynamics of HI and DI are examined using time-dependent wave-packet techniques. The orientation and alignment parameters aQ(K) (p) are determined as a function of photolysis energy for the resulting ground-state I(2P(3/2)) and excited-state I(2P(1/2)) atoms. The aQ(K) (p) param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-08, Vol.123 (5), p.054301-054301
Hauptverfasser: Jodoin, David N, Brown, Alex
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photodissociation dynamics of HI and DI are examined using time-dependent wave-packet techniques. The orientation and alignment parameters aQ(K) (p) are determined as a function of photolysis energy for the resulting ground-state I(2P(3/2)) and excited-state I(2P(1/2)) atoms. The aQ(K) (p) parameters describe the coherent and incoherent contributions to the angular momentum distributions from the A 1pi(1), a 3pi(1), and t 3sigma(1) electronic states accessed by perpendicular excitation and the a 3pi(0+) state accessed by a parallel transition. The outcomes of the dynamics based on both shifted ab initio results and three empirical models for the potential-energy curves and transition dipole moments are compared and contrasted. It is demonstrated that experimental measurement of the aQ(K) (p) parameters for the excitation from the vibrational ground state (upsilon=0) would be able to distinguish between the available models for the HI potential-energy curves and transition dipole moments. The differences between the aQ(K) (p) parameters for the excitation from upsilon=0 stand in sharp contrast to the scalar properties, i.e., total cross section and I* branching fraction, which require experimental measurement of photodissociation from excited vibrational states (upsilon>0) to distinguish between the models.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1989327