Sec16 is a Determinant of Transitional ER Organization

Background: Proteins are exported from the ER at transitional ER (tER) sites, which produce COPII vesicles. However, little is known about how COPII components are concentrated at tER sites. The budding yeast Pichia pastoris contains discrete tER sites and is, therefore, an ideal system for studying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2005-08, Vol.15 (16), p.1439-1447
Hauptverfasser: Connerly, Pamela L., Esaki, Masatoshi, Montegna, Elisabeth A., Strongin, Daniel E., Levi, Stephanie, Soderholm, Jon, Glick, Benjamin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Proteins are exported from the ER at transitional ER (tER) sites, which produce COPII vesicles. However, little is known about how COPII components are concentrated at tER sites. The budding yeast Pichia pastoris contains discrete tER sites and is, therefore, an ideal system for studying tER organization. Results: We show that the integrity of tER sites in P. pastoris requires the peripheral membrane protein Sec16. P. pastoris Sec16 is an order of magnitude less abundant than a COPII-coat protein at tER sites and seems to show a saturable association with these sites. A temperature-sensitive mutation in Sec16 causes tER fragmentation at elevated temperature. This effect is specific because when COPII assembly is inhibited with a dominant-negative form of the Sar1 GTPase, tER sites remain intact. The tER fragmentation in the sec16 mutant is accompanied by disruption of Golgi stacks. Conclusions: Our data suggest that Sec16 helps to organize patches of COPII-coat proteins into clusters that represent tER sites. The Golgi disruption that occurs in the sec16 mutant provides evidence that Golgi structure in budding yeasts depends on tER organization.
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2005.06.065