A transmission electron microscopy study of mineralization in age-induced transparent dentin

It is known that fractures are more likely to occur in altered teeth, particularly following restoration or endodontic repair; consequently, it is important to understand the structure of altered forms of dentin, the most abundant tissue in the human tooth, in order to better define the increased pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2005-12, Vol.26 (36), p.7650-7660
Hauptverfasser: Porter, Alexandra E., Nalla, Ravi K., Minor, Andrew, Jinschek, Joerg R., Kisielowski, Christian, Radmilovic, Velimir, Kinney, John H., Tomsia, Antoni P., Ritchie, R.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that fractures are more likely to occur in altered teeth, particularly following restoration or endodontic repair; consequently, it is important to understand the structure of altered forms of dentin, the most abundant tissue in the human tooth, in order to better define the increased propensity for such fractures. Transparent (or sclerotic) dentin, wherein the dentinal tubules become occluded with mineral as a natural progressive consequence of aging, is one such altered form. In the present study, high-resolution transmission electron microscopy is used to investigate the effect of aging on the mineral phase of dentin. Such studies revealed that the intertubular mineral crystallites were smaller in transparent dentin, and that the intratubular mineral (larger crystals deposited within the tubules) was chemically similar to the surrounding intertubular mineral. Exit-wave reconstructed lattice-plane images suggested that the intratubular mineral had nanometer-size grains. These observations support a “dissolution and reprecipitation” mechanism for the formation of transparent dentin.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2005.05.059