Improving Cell-Adhesive Properties of Recombinant Bombyx mori Silk by Incorporation of Collagen or Fibronectin Derived Peptides Produced by Transgenic Silkworms

Silk of Bombyx mori can be used as various biomaterials. Especially, it is useful as a protein for coating the surface of cell culture plates since the silk possesses a biocompatibility to the cultured cells. However, the cell-adhesive ability is weaker than collagen or fibronectin, which are used f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2007-11, Vol.8 (11), p.3487-3492
Hauptverfasser: Yanagisawa, Satoshi, Zhu, Zhenghua, Kobayashi, Isao, Uchino, Keiro, Tamada, Yasushi, Tamura, Toshiki, Asakura, Tetsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silk of Bombyx mori can be used as various biomaterials. Especially, it is useful as a protein for coating the surface of cell culture plates since the silk possesses a biocompatibility to the cultured cells. However, the cell-adhesive ability is weaker than collagen or fibronectin, which are used for coating the plate more frequently (Yao et al. J. Biochem., 2004, 136, 643−649). To increase the biocompatibility of the silk, we constructed transgenic silkworms, inserting the modified fibroin light-chain genes for making recombinant silks that possessed partial collagen or fibronectin sequences, that is, [GERGDLGPQGIAGQRGVV(GER)3GAS]8GPPGPCCGGG or [TGRGDSPAS]8, respectively. Films were made from the recombinant silks, and the cell-adhesive activity for cultured mammalian cells was observed. The results showed that the two types of recombinant silk films possessed a much higher cell-adhesive activity as compared to the original unmodified silk. Especially, the recombinant silk with the sequence [TGRGDSPAS]8, produced by a transgenic Nd-s D mutant, gave a 6 times higher activity than the original unmodified silk.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm700646f