A novel polymorphism in the 5' untranslated region of the porcine cytochrome b5 (CYB5) gene is associated with decreased fat androstenone level
Raising intact male pigs would have a significant economic impact on the pork industry; however, the presence of 16-androstene (a major cause of boar taint) in meat from male pigs would be highly objectionable to consumers. In pigs, a positive correlation has been found between cytochrome b5 (CYB5)...
Gespeichert in:
Veröffentlicht in: | Mammalian genome 2005-05, Vol.16 (5), p.367-373 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Raising intact male pigs would have a significant economic impact on the pork industry; however, the presence of 16-androstene (a major cause of boar taint) in meat from male pigs would be highly objectionable to consumers. In pigs, a positive correlation has been found between cytochrome b5 (CYB5) and production of 16-androstene. The search for polymorphism of CYB5 and functional analysis of polymorphism found should have an important impact on the efforts to develop genetic markers to select for low androstenone levels in fat from pigs. The aim of this study was to search the porcine CYB5 gene for mutations, examine its expression, identify genetic polymorphisms, and study how a genetic variation in this enzyme translates into interindividual variation in androstenone levels in fat from pig testis. We have identified a single nucleotide polymorphism (SNP) (G --> T) at base 8 up-stream of ATG in the CYB5 5' untranslated region which is associated with a lower fat androstenone level. Of the 229 testis samples tested, 84.8% were homozygous for the variant G, 12.4% were heterozygous, and 2.8% were homozygous for the variant T. Functional analysis of this mutation revealed that an individual homozygous for the T allele showed significantly lower CYB5 activity than an individual homozygous for the G allele. Thus, this may be at least partially responsible for a lower level of androstenone in pigs. Our findings provide an important genetic basis toward the goal of predicting the androstenone status in pigs and developing genetic markers for low androstenone. |
---|---|
ISSN: | 0938-8990 |
DOI: | 10.1007/s00335-004-2439-4 |