Looking for syringyl peroxidases
Lignins are cell wall heteropolymers that arise from the peroxidase-mediated coupling of p-coumaryl, coniferyl and sinapyl alcohols. In gymnosperms, they are derived from coniferyl alcohol, whereas in angiosperms, lignins are derived from coniferyl and sinapyl alcohols. Thus, although it is frequent...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2007-11, Vol.12 (11), p.486-491 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lignins are cell wall heteropolymers that arise from the peroxidase-mediated coupling of p-coumaryl, coniferyl and sinapyl alcohols. In gymnosperms, they are derived from coniferyl alcohol, whereas in angiosperms, lignins are derived from coniferyl and sinapyl alcohols. Thus, although it is frequently assumed that the chemical complexity of lignins has increased during plant evolution, it is frequently forgotten that pteridophytes have lignins that are derived from sinapyl alcohol. Until recently, most peroxidases characterized in flowering plants only oxidized coniferyl alcohol. However, recent reports have described the molecular characterization of peroxidases capable of oxidizing sinapyl alcohol (syringyl peroxidases). Current molecular studies propose that the structural motifs of syringyl peroxidases predate the radiation of tracheophytes, which suggests that syringyl peroxidases existed before the appearance of syringyl lignins. |
---|---|
ISSN: | 1360-1385 1878-4372 |
DOI: | 10.1016/j.tplants.2007.09.002 |