Basis Set Limit CCSD(T) Harmonic Vibrational Frequencies

Benchmark, frozen-core CCSD(T) equilibrium harmonic vibrational frequencies of 12 closed-shell and five open-shell molecules are computed to within 1 cm-1 of the basis set limit using the explicitly correlated CCSD(T)-R12 method. The convergence of the standard CCSD(T) method with the one-particle b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2007-11, Vol.111 (44), p.11242-11248
Hauptverfasser: Tew, David P, Klopper, Wim, Heckert, Miriam, Gauss, Jürgen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Benchmark, frozen-core CCSD(T) equilibrium harmonic vibrational frequencies of 12 closed-shell and five open-shell molecules are computed to within 1 cm-1 of the basis set limit using the explicitly correlated CCSD(T)-R12 method. The convergence of the standard CCSD(T) method with the one-particle basis sets of Dunning and co-workers is examined and found to be slow, with mean and maximum absolute errors of 1.3 and 3.5 cm-1 remaining at the cc-pV6Z level. Finite basis set effects do not appear to introduce systematic errors in equilibrium harmonic frequencies, and mean absolute errors reduce by a factor of 2 for each basis set cardinal number increment. The convergence of individual equilibrium harmonic frequencies is not guaranteed to be monotonic due to the associated shift in the equilibrium structure. The inclusion of computed scalar relativistic effects and previously available corrections for core-valence correlation and higher-order excitations in the cluster operator results in an agreement with experimentally derived harmonic frequencies of 0.1, 0.3, and −0.4 cm-1 for HF, N2, and CO, respectively. F2 continues to present a challenge to computational chemistry with an error of 3.2 cm-1, primarily resulting from the high basis set dependence of the quadruples contribution.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp070851u