Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling

The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2007-11, Vol.46 (31), p.7670-7678
Hauptverfasser: Bloemhof, Eric E., Lam, Jonathan C., Feria, V. Alfonso, Chang, Zensheu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.
ISSN:0003-6935
1559-128X
1539-4522
DOI:10.1364/AO.46.007670