Apparent Dewetting of Ultrathin Multilayered Polyelectrolyte Films Incubated in Aqueous Environments

We have investigated and characterized changes in film morphology and surface structure that occur when ultrathin multilayered polyelectrolyte films fabricated from linear poly(ethylene imine) (LPEI), sodium poly(styrene sulfonate) (SPS), and two hydrolytically degradable polyamines (polymers 1 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2007-11, Vol.23 (23), p.11603-11610
Hauptverfasser: Zhang, Jingtao, Fredin, Nathaniel J, Lynn, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated and characterized changes in film morphology and surface structure that occur when ultrathin multilayered polyelectrolyte films fabricated from linear poly(ethylene imine) (LPEI), sodium poly(styrene sulfonate) (SPS), and two hydrolytically degradable polyamines (polymers 1 and 2) are incubated in physiologically relevant environments. Characterization of the physical erosion profiles of films having the structure (LPEI/SPS)10(1/SPS)4(2/SPS)4 (∼80 nm thick) by atomic force microscopy (AFM), reflective optical microscopy, and scanning electron microscopy (SEM) demonstrated that these materials undergo large-scale changes in surface structure and morphology upon incubation in phosphate-buffered saline (PBS) at 37 °C. The patterns and structures generated during this transformation (e.g., nucleation and growth of holes, coalescence of holes, formation of cell-type structures, and the subsequent breakup of these features into droplets) are similar in many ways to those observed for the dewetting of thin films of conventional polymers, such as polystyrene, on nonwetting surfaces. The processes reported here are sufficiently slow (they occur over ∼100 h) and occur under sufficiently mild conditions (e.g., incubation in PBS at 37 °C) to permit characterization and quantification of the structures and features that arise during the course of these transformations. The apparent dewetting of these ultrathin films upon exposure to aqueous environments creates future opportunities to investigate and characterize processes of mass transport in this class of ionically cross-linked assemblies.
ISSN:0743-7463
1520-5827
DOI:10.1021/la701720k