L-carnitine and isovaleryl L-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro

Age-related bone loss is characterized by decreased osteoblast activity, possibly related to the reduction of energy production. Carnitine promotes energy availability and its concentration declines with age; Therefore, two Carnitine derivatives, L-carnitine fumarate (LC) and isovaleryl L-carnitine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcified tissue international 2005-06, Vol.76 (6), p.458-465
Hauptverfasser: Colucci, S, Mori, G, Vaira, S, Brunetti, G, Greco, G, Mancini, L, Simone, G M, Sardelli, F, Koverech, A, Zallone, A, Grano, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Age-related bone loss is characterized by decreased osteoblast activity, possibly related to the reduction of energy production. Carnitine promotes energy availability and its concentration declines with age; Therefore, two Carnitine derivatives, L-carnitine fumarate (LC) and isovaleryl L-carnitine fumarate (Iso-V-LC), have been tested on several parameters of human osteoblasts in vitro. Both compounds significantly increased osteoblast activity, but the new compound Iso-V-LC was more efficient than LC at lower concentrations. They both significantly enhanced cell proliferation, [3H]-proline incorporation and the expression of collagen type I (COLLI), and the bone sialoproteins (BSPs) and osteopontin (OPN). The percentage of alkaline phosphatase (ALP)-positive cells and the secretion of osteocalcin were not modified by LC and Iso-V-LC. Both molecules increased the formation of mineralized nodules, but Iso-V-LC reached the maximum effect at a concentration 10-fold lower than that of LC. Furthermore, we showed that insulin-like growth factor (IGF)-I and IGF-II mRNA levels were not modified by the treatment. However, the two compounds induced an increase of insulin-like growth factor binding protein (IGFBP)-3 and a decrease of IGFBP-5 in both osteoblast lysates and the extracellular matrix (ECM). In conclusion these data suggest that carnitine and, in particular, its new derivative, Iso-V-LC supplementation in the elderly may stimulate osteoblast activity and decrease age-related bone loss.
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-004-0147-4