Inhibition of pacemaker currents by nitric oxide via activation of ATP-sensitive K+ channels in cultured interstitial cells of Cajal from the mouse small intestine

We investigated the role of nitric oxide (NO) in pacemaker activity and signal mechanisms in cultured interstitial cells of Cajal (ICC) of the mouse small intestine using whole cell patch-clamp techniques at 30 degrees C. ICC generated pacemaker potential in the current clamp mode and pacemaker curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2007-11, Vol.376 (3), p.175-184
Hauptverfasser: Park, Chan Guk, Kim, Young Dae, Kim, Man Yoo, Kim, Jun Soo, Choi, Seok, Yeum, Cheol Ho, Parajuli, Shankar Prasad, Park, Jong Seong, Jeong, Han Seong, So, Insuk, Kim, Ki Whan, Jun, Jae Yeoul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the role of nitric oxide (NO) in pacemaker activity and signal mechanisms in cultured interstitial cells of Cajal (ICC) of the mouse small intestine using whole cell patch-clamp techniques at 30 degrees C. ICC generated pacemaker potential in the current clamp mode and pacemaker currents at a holding potential of -70 mV. (+/-)-S-nitroso-N-acetylpenicillamine (SNAP; a NO donor) produced membrane hyperpolarization and inhibited the amplitude and frequency of the pacemaker currents, and increased resting currents in the outward direction. These effects were blocked by the use of glibenclamide (an ATP-sensitive K+ channel blocker), but not by the use of 5-hydroxydecanoic acid (a mitochondrial ATP-sensitive K+ channel blocker). Pretreatment with ODQ (a guanylate cyclase inhibitor) almost blocked the NO-induced effects. The use of cell-permeable 8-bromo-cyclic GMP also mimicked the action of SNAP. However, the use of KT-5823 (a protein kinase G inhibitor) did not block the NO-induced effects. Spontaneous [Ca2+]i oscillations in ICC were inhibited by the treatment of SNAP, as seen in recordings of intracellular Ca2+ ([Ca2+]i). These results suggest that NO inhibits pacemaker activity by the activation of ATP-sensitive K+ channels via a cyclic GMP dependent mechanism in ICC, and the activation of ATP-sensitive K+ channels mediates the inhibition of spontaneous [Ca2+]i oscillations.
ISSN:0028-1298
1432-1912
DOI:10.1007/s00210-007-0187-1