A Multidimensional Differential Proteomic Platform Using Dual-Phase Ion-Exchange Chromatography−Polyacrylamide Gel Electrophoresis/Reversed-Phase Liquid Chromatography Tandem Mass Spectrometry
Differential proteomic analysis has arisen as a large-scale means to discern proteome-wide changes upon treatment, injury, or disease. Tandem protein separation methods are required for large-scale differential proteomic analysis. Here, a novel multidimensional platform for resolving and differentia...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2005-08, Vol.77 (15), p.4836-4845 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differential proteomic analysis has arisen as a large-scale means to discern proteome-wide changes upon treatment, injury, or disease. Tandem protein separation methods are required for large-scale differential proteomic analysis. Here, a novel multidimensional platform for resolving and differentially analyzing complex biological samples is presented. The platform, collectively termed CAX-PAGE/RPLC-MSMS, combines biphasic ion-exchange chromatography with polyacrylamide gel electrophoresis for protein separation, quantification, and differential band targeting, followed by capillary reversed-phase liquid chromatography and data-dependent tandem mass spectrometry for quantitative and qualitative peptide analysis. CAX-PAGE provides high protein resolving power with a theoretical peak capacity of 3570, extendable to 7600, a wide protein mass range verified from 16 to 273 kDa, and reproducible differential sample comparison without the added expense of fluorescent dyes and imaging equipment. Demonstrated using a neuroproteomic model, CAX-PAGE revealed an increased number of differential proteins, 137, compared with 82 found by 2D difference gel electrophoresis. When combined with RPLC-MSMS for protein identification, an additional quantification step is performed for internal validation, confirming a 2-fold or greater change in 89% of identified differential targets. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac050478r |