In vivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture

PBDEs have been synthesized in large quantities as flame retardants for commercial products, such as electronic equipment and textiles. The rising in levels of PBDEs in tissues in wildlife species and in human milk and plasma samples over the past several years have raised concerns about possible he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2005-08, Vol.207 (1), p.78-88
Hauptverfasser: Stoker, T.E., Cooper, R.L., Lambright, C.S., Wilson, V.S., Furr, J., Gray, L.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PBDEs have been synthesized in large quantities as flame retardants for commercial products, such as electronic equipment and textiles. The rising in levels of PBDEs in tissues in wildlife species and in human milk and plasma samples over the past several years have raised concerns about possible health effects. Recently, we showed that the PBDE mixture, DE-71, delayed puberty and suppressed the growth of androgen-dependent tissues in male Wistar rat following a peri-pubertal exposure. These effects suggested that DE-71 may be either inducing steroid hormone metabolism or acting as an androgen receptor (AR) antagonist. To elucidate the potential anti-androgenic effects of this mixture, we evaluated DE-71 in several in vivo assays, which are responsive to alterations in androgen activity. In a pubertal exposure study designed to further evaluate the delay in preputial separation (PPS), we observed a dose-dependent delay in PPS with 60 and 120 mg/kg/day of DE-71 (4 and 5 days) and a corresponding suppression of ventral prostate (VP) and seminal vesicle growth at both doses. Adult males exposed to 60 mg/kg DE-71 for 3 days resulted in a significant increase in luteinizing hormone and a non-significant increase in testosterone, androstenedione and estrone. DE-71 also tested positive for anti-androgenic activity in an immature rat Hershberger assay, with decreases in mean VP and seminal vesicle weight following doses of 30–240 mg/kg. DE-71 and the individual BDE congeners which comprise the mixture (BDE-47, -99, -100, -153, -154) were also evaluated in vitro. First, AR binding was evaluated in a competitive binding assay using rat VP cytosol. In addition, we evaluated gene activation in a transcriptional activation assay using the MDA-kb2 cell line which contains an endogenous human AR and a transfected luciferase reporter. DE-71 and BDE-100 (2, 4, 6-pentaBDE) both inhibited AR binding, with IC50s of approximately 5 μM. In addition, DE-71 and two of the congeners (BDE-100 and BDE-47) inhibited DHT-induced transcriptional activation. The pattern of inhibition shown in the double-reciprocal plot for BDE-100 and the linear slope replot confirmed that the in vitro mechanism is pure competitive inhibition, with a inhibition constant ( K i) of 1 μM. The delay in puberty in the male rat and decreased growth of androgen-dependent tissues observed previously following exposure to DE-71 were likely due to this inhibition of AR binding by several of the congeners which ma
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2005.05.010