THE EVOLUTION OF STRATEGY VARIATION: WILL AN ESS EVOLVE?

Evolutionarily stable strategy (ESS) models are widely viewed as predicting the strategy of an individual that when monomorphic or nearly so prevents a mutant with any other strategy from entering the population. In fact, the prediction of some of these models is ambiguous when the predicted strateg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2005-06, Vol.59 (6), p.1183-1193
Hauptverfasser: Orzack, Steven Hecht, Hines, W. G S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolutionarily stable strategy (ESS) models are widely viewed as predicting the strategy of an individual that when monomorphic or nearly so prevents a mutant with any other strategy from entering the population. In fact, the prediction of some of these models is ambiguous when the predicted strategy is “mixed”, as in the case of a sex ratio, which may be regarded as a mixture of the subtraits “produce a daughter” and “produce a son.” Some models predict only that such a mixture be manifested by the population as a whole, that is, as an “evolutionarily stable state”; consequently, strategy monomorphism or polymorphism is consistent with the prediction. The hawk-dove game and the sex-ratio game in a panmictic population are models that make such a “degenerate” prediction. We show here that the incorporation of population finiteness into degenerate models has effects for and against the evolution of a monomorphism (an ESS) that are of equal order in the population size, so that no one effect can be said to predominate. Therefore, we used Monte Carlo simulations to determine the probability that a finite population evolves to an ESS as opposed to a polymorphism. We show that the probability that an ESS will evolve is generally much less than has been reported and that this probability depends on the population size, the type of competition among individuals, and the number of and distribution of strategies in the initial population. We also demonstrate how the strength of natural selection on strategies can increase as population size decreases. This inverse dependency underscores the incorrectness of Fisher's and Wright's assumption that there is just one qualitative relationship between population size and the intensity of natural selection.
ISSN:0014-3820
1558-5646
DOI:10.1554/04-447