PEAK SHIFT DISCRIMINATION LEARNING AS A MECHANISM OF SIGNAL EVOLUTION

“Peak shift” is a behavioral response bias arising from discrimination learning in which animals display a directional, but limited, preference for or avoidance of unusual stimuli. Its hypothesized evolutionary relevance has been primarily in the realm of aposematic coloration and limited sexual dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2005-06, Vol.59 (6), p.1300-1305
Hauptverfasser: Lynn, Spencer K, Cnaani, Jonathan, Papaj, Daniel R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:“Peak shift” is a behavioral response bias arising from discrimination learning in which animals display a directional, but limited, preference for or avoidance of unusual stimuli. Its hypothesized evolutionary relevance has been primarily in the realm of aposematic coloration and limited sexual dimorphism. Here, we develop a novel functional approach to peak shift, based on signal detection theory, which characterizes the response bias as arising from uncertainty about stimulus appearance, frequency, and quality. This approach allows the influence of peak shift to be generalized to the evolution of signals in a variety of domains and sensory modalities. The approach is illustrated with a bumblebee (Bombus impatiens) discrimination learning experiment. Bees exhibited peak shift while foraging in an artificial Batesian mimicry system. Changes in flower abundance, color distribution, and visitation reward induced bees to preferentially visit novel flower colors that reduced the risk of flower-type misidentification. Under conditions of signal uncertainty, peak shift results in visitation to rarer, but more easily distinguished, morphological variants of rewarding species in preference to their average morphology. Peak shift is a common and taxonomically wide-spread phenomenon. This example of the possible role of peak shift in signal evolution can be generalized to other systems in which a signal receiver learns to make choices in situations in which signal variation is linked to the sender's reproductive success.
ISSN:0014-3820
1558-5646
DOI:10.1554/04-284