Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months

Poly(lactic acid) (PLA) is used for medical devices such as sutures or orthopedic screws. A standard way to determine the loss of mechanical properties of a degradable polymer would be to soak the polymer in phosphate buffered saline (PBS) and test the desired property as a function of immersion tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research 2005-09, Vol.74A (3), p.388-396
Hauptverfasser: Wright-Charlesworth, Debra D., Miller, Darinda M., Miskioglu, Ibrahim, King, Julia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(lactic acid) (PLA) is used for medical devices such as sutures or orthopedic screws. A standard way to determine the loss of mechanical properties of a degradable polymer would be to soak the polymer in phosphate buffered saline (PBS) and test the desired property as a function of immersion time. This method is not sensitive enough to discern changes in mechanical properties through the cross‐section of the polymer and neglects the degradation that is occurring at the molecular level. This article presents results of a nanoindentation study carried out with PLA. The modulus and hardness of PLA is characterized as a function of processing method, immersion time in PBS, and location of the indent. Measuring local properties with the nanoindenter allowed detection of differences in material properties as a function of all three of these variables. The mechanical properties on the edge were lower than the interior of the sample after in vitro degradation, and changes were seen earlier for nanoindentation than for traditional flexural or tensile tests. The nanoindenter is a valuable tool for quantifying changes in material properties and may have applicability for accelerated tests to screen biomaterials. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005
ISSN:1549-3296
0021-9304
1552-4965
1097-4636
DOI:10.1002/jbm.a.30353