Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line
“Side population” (SP) cells, which pump out the fluorescent dye H33342 via the ABCG2 transporter, define a putative stem/progenitor cell population in the mammary gland. Breast cancer SP cells recently isolated from the MCF-7 cell line possess similar properties and may represent stem cell-like can...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2007-12, Vol.306 (1-2), p.201-212 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | “Side population” (SP) cells, which pump out the fluorescent dye H33342 via the ABCG2 transporter, define a putative stem/progenitor cell population in the mammary gland. Breast cancer SP cells recently isolated from the MCF-7 cell line possess similar properties and may represent stem cell-like cancer cells. This study extends SP cell analysis to a broad panel of human breast cancer cell lines and investigates the expression of differentiation-associated markers in isolated cancer SP cells. Expression of ABCG2 was determined in 16 breast cancer cell lines by quantitative RT-PCR, Western blotting and immunohistochemistry. Subsequently, all cell lines were screened for the presence of SP cells. Human breast cancer cell lines commonly express ABCG2. ABCG2-immunoreactivity was clearly restricted to rare cancer cells in several cell lines including Cal-51. Analysis of H33342-labeled Cal-51 cells revealed a small fraction of putative SP cells accounting for one percent of all cells. The genuine nature of Cal-51 SP cells was unambiguously verified by demonstrating a 30-fold increased ABCG2-expression in isolated Cal-51 SP cells. During in vitro expansion, Cal-51 SP cells generated heterologous non-SP (NSP) cells and ABCG2-expression declined dramatically. In contrast, NSP cells failed to sustain proliferation. Freshly isolated Cal-51 SP cells also exhibited increased expression of Muc1 and CALLA. Noteworthy, non-malignant mammary epithelial SP cells lack these differentiation markers, highlighting fundamental differences between non-malignant and breast cancer-derived SP cells. In summary, we established Cal-51 SP cells as a novel in vitro model to study differential gene expression in breast cancer-derived SP and NSP cells. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-007-9570-y |