Structure-based maximal affinity model predicts small-molecule druggability
Lead generation is a major hurdle in small-molecule drug discovery, with an estimated 60% of projects failing from lack of lead matter or difficulty in optimizing leads for drug-like properties. It would be valuable to identify these less-druggable targets before incurring substantial expenditure an...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2007-01, Vol.25 (1), p.71-75 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lead generation is a major hurdle in small-molecule drug discovery, with an estimated 60% of projects failing from lack of lead matter or difficulty in optimizing leads for drug-like properties. It would be valuable to identify these less-druggable targets before incurring substantial expenditure and effort. Here we show that a model-based approach using basic biophysical principles yields good prediction of druggability based solely on the crystal structure of the target binding site. We quantitatively estimate the maximal affinity achievable by a drug-like molecule, and we show that these calculated values correlate with drug discovery outcomes. We experimentally test two predictions using high-throughput screening of a diverse compound collection. The collective results highlight the utility of our approach as well as strategies for tackling difficult targets. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/nbt1273 |