Enhanced Stimulus Strength Improves Visual Cognition in Aging and Alzheimer's Disease
Deficits in visual cognition in Alzheimer's disease (AD) arise from neuropathological changes in higher-order association areas of the cortex and from defective input from lower-level visual processing areas. We investigated whether enhanced signal strength may lead to improvement of visual cog...
Gespeichert in:
Veröffentlicht in: | Cortex 2007, Vol.43 (7), p.952-966 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deficits in visual cognition in Alzheimer's disease (AD) arise from neuropathological changes in higher-order association areas of the cortex and from defective input from lower-level visual processing areas. We investigated whether enhanced signal strength may lead to improvement of visual cognition in AD. We tested 35 individuals with probable AD, 35 age-matched elderly control (EC) and 58 young control (YC) adults on letter identification, word reading, picture naming, discrimination of unfamiliar faces, and pattern completion. The contrast sensitivity step-difference across an independent sample of AD and EC groups was used in calculating an image filter, from which we produced stimulus- strength conditions of low-degraded, medium-normal, and high-enhanced. Using this filter we created a hypothetical proximal-strength equivalence between AD at medium strength and EC at low strength, and between AD at high strength and EC at medium strength. For letter identification, word reading, picture naming, and face discrimination, medium strength elicited AD accuracy levels and reaction times that were similar to those of EC at low strength. On picture naming, increased strength reduced perceptual-type errors for EC and AD and random errors for AD. For word reading, high strength elicited AD accuracy levels and reaction times that were equivalent to those of EC at medium strength. We saw no effect of signal-strength manipulation on performance of pattern completion, possibly owing to the complex cognitive demands of that task or to the inadequacy of the filter for its images. The results indicate that putative AD-EC differences in cognition directly reflect contrast sensitivity differences between the groups. Enhancement of stimulus strength can ameliorate vision-based deficits and lead to improvement in some aspects of cognitive performance. These results suggest new non-pharmacological avenues to explore in the attempt to improve cognition in elderly adults and especially in individuals with AD. |
---|---|
ISSN: | 0010-9452 1973-8102 |
DOI: | 10.1016/S0010-9452(08)70693-2 |