Oxidative addition of 2-substituted azolium salts to Group-10 metal zero complexes--a DFT study

Generation of N-heterocyclic carbene (NHC) complexes [(dmpe)M(azol-2-ylidene)R] via the oxidative addition of a series of 2-substituted azolium salts to Group-10 zerovalent metal complexes has been investigated using density functional theory (2-R = H, Me, Ph; Azole = imidazole, thiazole, oxazole; M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2007-01 (41), p.4650-4658
Hauptverfasser: Graham, David C, Cavell, Kingsley J, Yates, Brian F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generation of N-heterocyclic carbene (NHC) complexes [(dmpe)M(azol-2-ylidene)R] via the oxidative addition of a series of 2-substituted azolium salts to Group-10 zerovalent metal complexes has been investigated using density functional theory (2-R = H, Me, Ph; Azole = imidazole, thiazole, oxazole; M = Ni, Pd, Pt). Overall, platinum-based pathways result in the greatest enthalpies of reaction, but due to the reactive nature of Group-10 metals bearing the 1,2-bis(dimethylphosphino)ethane (dmpe) chelate, nickel and palladium species also have little trouble proceeding to stable products in the absence of a significant barrier. Imidazolium salts were found to be the most vulnerable to oxidative addition due to their low stabilisation energies when compared to the oxazolium and thiazolium species. Activation barriers show the general trend of phenyl > methyl > hydrido with regard to the azole 2-substituent, with no observed barrier for all but one of the 2-hydrido cases. Minimal barriers were found to exist in a number of cases for activation of a C(2)-CH3 bond suggesting that synthesis of alkyl-carbene complexes may be possible via this route under certain conditions, and therefore ionic liquids based on these substituted azolium salts may be active participants in catalytic reactions.
ISSN:1477-9226
1477-9234
DOI:10.1039/b709914b