Red Antenna States of Photosystem I from Cyanobacteria Synechocystis PCC 6803 and Thermosynechococcus elongatus:  Single-Complex Spectroscopy and Spectral Hole-Burning Study

Hole-burning and single photosynthetic complex spectroscopy were used to study the excitonic structure and excitation energy-transfer processes of cyanobacterial trimeric Photosystem I (PS I) complexes from Synechocystis PCC 6803 and Thermosynechococcus elongatus at low temperatures. It was shown th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2007-01, Vol.111 (1), p.286-292
Hauptverfasser: Riley, Kerry J, Reinot, Tõnu, Jankowiak, Ryszard, Fromme, Petra, Zazubovich, Valter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hole-burning and single photosynthetic complex spectroscopy were used to study the excitonic structure and excitation energy-transfer processes of cyanobacterial trimeric Photosystem I (PS I) complexes from Synechocystis PCC 6803 and Thermosynechococcus elongatus at low temperatures. It was shown that individual PS I complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e., C706 and C714) reveal only a broad structureless fluorescence band with a maximum near 720 nm, indicating strong electron−phonon coupling for the lowest energy C714 red state. The absence of zero-phonon lines (ZPLs) belonging to the C706 red state in the emission spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient energy transfer with a characteristic transfer time of ∼5 ps. This finding is in agreement with spectral hole-burning data obtained for bulk samples of Synechocystis PCC 6803. The importance of comparing the results of ensemble (spectral hole burning) and single-complex measurements was demonstrated. The presence of narrow ZPLs near 710 nm in addition to the broad fluorescence band at ∼730 nm in Thermosynechococcus elongatus (Jelezko et al. J. Phys. Chem. B 2000, 104, 8093−8096) has been confirmed. We also demonstrate that high-quality samples obtained by dissolving crystals of PS I of Thermosynechococcus elongatus exhibit stronger absorption in the red antenna region than any samples studied so far by us and other groups.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp062664m