Effect of Tryptophan Hydroxylase 1 Deficiency on the Development of Hypoxia-Induced Pulmonary Hypertension

Tryptophan hydroxylase 1 catalyzes the rate-limiting step in the synthesis of serotonin in the periphery. Recently, it has been shown that expression of the tryptophan hydroxylase 1 gene is increased in lungs and pulmonary endothelial cells from patients with idiopathic pulmonary arterial hypertensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2007-01, Vol.49 (1), p.232-236
Hauptverfasser: Morecroft, Ian, Dempsie, Yvonne, Bader, Michael, Walther, Diego J, Kotnik, Katarina, Loughlin, Lynn, Nilsen, Margaret, MacLean, Margaret R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tryptophan hydroxylase 1 catalyzes the rate-limiting step in the synthesis of serotonin in the periphery. Recently, it has been shown that expression of the tryptophan hydroxylase 1 gene is increased in lungs and pulmonary endothelial cells from patients with idiopathic pulmonary arterial hypertension. Here we investigated the effect of genetic deletion of tryptophan hydroxylase 1 on hypoxia-induced pulmonary arterial hypertension in mice by measuring pulmonary hemodynamics and pulmonary vascular remodeling before and after 2 weeks of hypoxia. In wild-type mice, hypoxia increased right ventricular pressure and pulmonary vascular remodeling. These effects of hypoxia were attenuated in the tryptophan hydroxylase 1mice. Hypoxia increased right ventricular hypertrophy in both wild-type and tryptophan hydroxylase 1mice suggesting that in vivo peripheral serotonin has a differential effect on the pulmonary vasculature and right ventricular hypertrophy. Contractile responses to serotonin were increased in pulmonary arteries from tryptophan hydroxylase 1mice. Hypoxia increased serotonin-mediated contraction in vessels from the wild-type mice, but this was not further increased by hypoxia in the tryptophan hydroxylase 1mice. In conclusion, these results indicate that tryptophan hydroxylase 1 and peripheral serotonin play an essential role in the development of hypoxia-induced elevations in pulmonary pressures and hypoxia-induced pulmonary vascular remodeling. In addition, the results suggest that, in mice, serotonin has differential effects on the pulmonary vasculature and right ventricular hypertrophy.
ISSN:0194-911X
1524-4563
DOI:10.1161/01.HYP.0000252210.58849.78