Trapping and cooling a mirror to its quantum mechanical ground state

We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2007-08, Vol.99 (7), p.073601-073601, Article 073601
Hauptverfasser: Bhattacharya, M, Meystre, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arrangements being used currently. For comparable parameters the three-mirror configuration provides a stiffer trap for the oscillating mirror. Furthermore, it prevents bistability from limiting the use of higher laser powers for mirror trapping, and also partially does so for mirror cooling. Lastly, it improves the isolation of the mirror from classical noise so that the quantum mechanical dynamics of the mirror become easier to observe. These improvements are expected to bring the task of achieving and detecting ground state occupation for the mirror closer to completion.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.99.073601