Activation of protein kinase B/Akt in the periphery contributes to pain behavior induced by capsaicin in rats
Abstract Protein kinase B (PKB/Akt) is a member of the second-messenger regulated subfamily of protein kinases. It is implicated in signaling downstream of growth factors, insulin receptor tyrosine kinases and phosphoinositide 3-kinase (PI3K). Current studies indicate that nerve growth factor (NGF),...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2007-01, Vol.144 (1), p.286-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Protein kinase B (PKB/Akt) is a member of the second-messenger regulated subfamily of protein kinases. It is implicated in signaling downstream of growth factors, insulin receptor tyrosine kinases and phosphoinositide 3-kinase (PI3K). Current studies indicate that nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and PI3K help mediate inflammatory hyperalgesia. However, little is known about the role of PKB/Akt in the nociceptive system. In this study, we investigated whether PKB/Akt in primary sensory neurons is activated after noxious stimulation and contributes to pain behavior induced in rats by capsaicin. We demonstrated that phospho-PKB/Akt (p-PKB/Akt) is increased in dorsal root ganglia (DRG) at 5 min after intradermal injection of capsaicin. p-PKB/Akt is distributed predominantly in small- and medium-sized DRG cells. After capsaicin injection, p-PKB/Akt (473) is colocalized with isotectin-B4 (IB4), tyrosine kinase A (TrkA), and calcitonin gene-related peptide (CGRP). Furthermore, most transient receptor potential vanilloid type 1 (TRPV1) positive DRG neurons double label for p-PKB/Akt. Behavioral experiments show that intradermal injection of a PI3K (upstream of PKB/Akt) inhibitor, wortmannin, dose-dependently inhibits the changes in exploratory behavior evoked by capsaicin injection. The PKB/Akt inhibitor, Akt inhibitor IV, has the same effect. The results suggest that the PKB/Akt signaling pathway in the periphery is activated by noxious stimulation and contributes to pain behavior. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2006.08.084 |