Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process

We studied the kinetics of the formation of iron oxide nanocrystals obtained from the solution-phase thermal decomposition of iron−oleate complex via the “heating-up” process. To obtain detailed information on the thermal decomposition process and the formation of iron oxide nanocrystals in the solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2007-10, Vol.129 (41), p.12571-12584
Hauptverfasser: Kwon, Soon Gu, Piao, Yuanzhe, Park, Jongnam, Angappane, Subramanian, Jo, Younghun, Hwang, Nong-Moon, Park, Je-Geun, Hyeon, Taeghwan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the kinetics of the formation of iron oxide nanocrystals obtained from the solution-phase thermal decomposition of iron−oleate complex via the “heating-up” process. To obtain detailed information on the thermal decomposition process and the formation of iron oxide nanocrystals in the solution, we performed a thermogravimetric-mass spectrometric analysis (TG-MS) and in-situ magnetic measurements using SQUID. The TG-MS results showed that iron−oleate complex was decomposed at around 320 °C. The in-situ SQUID data revealed that the thermal decomposition of iron−oleate complex generates intermediate species, which seem to act as monomers for the iron oxide nanocrystals. Extensive studies on the nucleation and growth process using size exclusion chromatography, the crystallization yield data, and TEM showed that the sudden increase in the number concentration of the nanocrystals (burst of nucleation) is followed by the rapid narrowing of the size distribution (size focusing). We constructed a theoretical model to describe the “heating-up” process and performed a numerical simulation. The simulation results matched well with the experimental data, and furthermore they are well fitted to the well-known LaMer model that is characterized by the burst of nucleation and the separation of nucleation and growth under continuous monomer supply condition. Through this theoretical work, we showed that the “heating-up” and “hot injection” processes could be understood within the same theoretical framework in which they share the characteristics of nucleation and growth stages.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja074633q