Focus on phosphohistidine

Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P-N) bond of phosphohisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Amino acids 2007, Vol.32 (1), p.145-156
Hauptverfasser: Attwood, P. V, Piggott, M. J, Zu, X. L, Besant, P. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P-N) bond of phosphohistidine has a high ΔG° of hydrolysis and is unstable under acidic conditions. This acid-lability has meant that the study of protein histidine phosphorylation and the associated protein kinases has been slower to progress than other protein phosphorylation studies. Histidine phosphorylation is a crucial component of cell signalling in prokaryotes and lower eukaryotes. It is also now becoming widely reported in mammalian signalling pathways and implicated in certain human disease states. This review covers the chemistry of phosphohistidine in terms of its isomeric forms and chemical derivatives, how they can be synthesized, purified, identified and the relative stabilities of each of these forms. Furthermore, we highlight how this chemistry relates to the role of phosphohistidine in its various biological functions.
ISSN:0939-4451
1438-2199
DOI:10.1007/s00726-006-0443-6