Propagation and transformation of flat-topped multi-Gaussian beams in a general nonsymmetrical apertured double-lens system

On the basis of expanding a hard-edged aperture function as a finite sum of complex Gaussian functions, an approximate analytical expression for the propagation of an input complex amplitude distribution passing through a general nonsymmetrical apertured double-lens system is derived. Then, the prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007, Vol.24 (1), p.84-92
1. Verfasser: Chen, Jiannong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the basis of expanding a hard-edged aperture function as a finite sum of complex Gaussian functions, an approximate analytical expression for the propagation of an input complex amplitude distribution passing through a general nonsymmetrical apertured double-lens system is derived. Then, the propagation result for two-dimensional flat-topped multi-Gaussian beams is given. It is shown that the apertured Lohmann's symmetrical double-lens system for fractional Fourier transform is a special case of the general apertured double-lens system. The numerical calculation, graphical illustration, and some discussions for the transformation of the two-dimensional flat-topped multi-Gaussian beam in apertured Lohmann's symmetrical double-lens systems are also presented.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.24.000084