Induction of CYP2B and CYP2E1 in precision-cut rat liver slices cultured in defined medium

Many drugs and endogenous substances undergo biotransformation by cytochrome P450s (CYPs), and some drugs are also capable of modulating the expression of various CYPs. Knowledge of the potential of a drug to modulate CYPs is useful to help predict potential drug interactions. This study utilized pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology in vitro 2007-02, Vol.21 (1), p.109-115
Hauptverfasser: Catania, Jason R., McGarrigle, Barbara P., Rittenhouse-Olson, Kate, Olson, James R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many drugs and endogenous substances undergo biotransformation by cytochrome P450s (CYPs), and some drugs are also capable of modulating the expression of various CYPs. Knowledge of the potential of a drug to modulate CYPs is useful to help predict potential drug interactions. This study utilized precision-cut rat liver slices in dynamic organ culture to assess the effects of various media on the viability of rat liver slices and the expression of CYP2B and CYP2E1 when the slices are exposed to phenobarbital and isoniazid, which are drugs capable of inducing these respective CYPs. Liver slices were maintained in serum supplemented Waymouths medium and two different serum-free media, Hepatozyme (Life Technologies) and a new defined medium, which is named BPM. While Hepatozyme is considered a suitable medium to support primary hepatocyte cultures, this product did not maintain viable liver slices, even for 24 h. The serum containing and new defined media maintained viable liver slices for up to 96 h in culture. Phenobarbital (0.5 mM) and isoniazid (0.1 or 0.6 mM) did not affect viability in this model. In the absence of phenobarbital or isoniazid, liver slices maintained for 96 h in the new BPM medium maintained the respective levels of CYP2B and 2E1 protein at 1.8 and 1.9-fold higher than in slices maintained in the serum-containing medium. Phenobarbital exposure (0.5 mM) for 96 h induced CYP2B protein 5.2-fold in the BPM medium and 2.5-fold in the serum-containing medium. Isoniazid exposure (0.1 and 0.5 mM) for 96 h induced CYP2E1 protein 1.9 and 2.1-fold (respectively) in the BPM medium and 2.1 and 2.0-fold in the serum-containing medium. The respective CYP enzymatic activities were also increased by these drugs in a similar manner. Thus, the new defined BPM medium provides suitable conditions for maintaining CYP2B and 2E1 in liver slices and supports the investigation of drug-induced modulation of these enzymes.
ISSN:0887-2333
1879-3177
DOI:10.1016/j.tiv.2006.08.001