A kinematic model of the shoulder complex to evaluate the arm-reachable workspace
Abstract Upper-arm evaluation including shoulder motion in physiotherapy has no three-dimensional tool for an arm-functioning evaluation, which hampers an uniform, objective comparison. Human shoulder complex models suffer from lack of shoulder girdle kinematic data. A kinematic shoulder-complex mod...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2007-01, Vol.40 (1), p.86-91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Upper-arm evaluation including shoulder motion in physiotherapy has no three-dimensional tool for an arm-functioning evaluation, which hampers an uniform, objective comparison. Human shoulder complex models suffer from lack of shoulder girdle kinematic data. A kinematic shoulder-complex model with six degrees of freedom is proposed as the composition of the inner joint representing the shoulder-girdle joints and outer joint representing the glenohumeral joint. The outer shoulder joint has three perpendicular rotations: adduction/abduction, retroflexion/flexion and internal/external rotation of the humerus. The inner shoulder joint has two rotations, depression/elevation and retraction/protraction, and one translation, which are all dependent on the elevation angle of the humerus. The human arm-reachable workspace that represents the area within reach of the wrist is calculated on the basis of the shoulder-complex model and the additional elbow-joint direct kinematics. It was demonstrated that cross-sections of the calculated workspace are in agreement with the measured arm-reachable workspace in all three anatomical planes. The arm-reachable workspace volume and graphics were calculated and a comparison of the arm's workspaces during a patient's shoulder treatment was made. The obtained numerical and graphical arm-reachable workspaces can be used for arm-functioning evaluations in rehabilitation and ergonomics. |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2005.11.010 |