Training-Induced Functional Activation Changes in Dual-Task Processing: An fMRI Study

Although training-induced changes in brain activity have been previously examined, plasticity associated with executive functions remains understudied. In this study, we examined training-related changes in cortical activity during a dual task requiring executive control. Two functional magnetic res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2007-01, Vol.17 (1), p.192-204
Hauptverfasser: Erickson, Kirk I., Colcombe, Stanley J., Wadhwa, Ruchika, Bherer, Louis, Peterson, Matthew S., Scalf, Paige E., Kim, Jennifer S., Alvarado, Maritza, Kramer, Arthur F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although training-induced changes in brain activity have been previously examined, plasticity associated with executive functions remains understudied. In this study, we examined training-related changes in cortical activity during a dual task requiring executive control. Two functional magnetic resonance imaging (fMRI) sessions, one before training and one after training, were performed on both a control group and a training group. Using a region-of-interest analysis, we examined Time × Group and Time × Group × Condition interactions to isolate training-dependent changes in activation. We found that most regions involved in dual-task processing before training showed reductions in activation after training. Many of the decreases in activation were correlated with improved performance on the task. We also found an area in the dorsolateral prefrontal cortex that showed an increase in activation for the training group for the dual-task condition, which was also correlated with improved performance. These results are discussed in relation to the efficacy of training protocols for modulating attention and executive functions, dual-task processing, and fMRI correlates of plasticity.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhj137