Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils—comparison of two methods

Two methods utilizing the complexation of labile Al species by 8-hydroxyquinoline (HQN) and salicylic acid (SA) ligand groups were developed for aluminium operationally defined fractionation in acid soils. First, the solid phase extraction (SPE) procedure by a short-term ion-exchange batch reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2006-07, Vol.573, p.474-481
Hauptverfasser: Mattis, Peter, Kubova, Jana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two methods utilizing the complexation of labile Al species by 8-hydroxyquinoline (HQN) and salicylic acid (SA) ligand groups were developed for aluminium operationally defined fractionation in acid soils. First, the solid phase extraction (SPE) procedure by a short-term ion-exchange batch reaction with chelating resins Iontosorb Oxin and Iontosorb Salicyl containing both ligand groups was used previously. Second, the 8-hydroxyquinoline, salicylic acid and ammonium salicylate agents with different concentrations by a single extraction protocol were applied in this paper. The flame atomic absorption spectrometry (FAAS) and optical emission spectrometry with inductively coupled plasma were used for aluminium quantification. The comparison of results from both methods show the possibility to supersede the first laborious method for the second simpler one in Al environmental risk assessment. The use of 1% 8-hydroxyquinoline in 2% acetic acid and 0.2% salicylic acid by a single extraction protocol without a need of sample filtration can supersede the SPE procedure in the Al pollution soil monitoring. Finally, the new scheme usable in a laboratory and moreover, directly in a field was proposed for Al fractionation in solid and liquid environmental samples. The labile Al species in soils and sediments are separated after their single leaching by 8-hydroxyquinoline or salicylic acid without a need of sample filtration. The labile Al species in soil solutions and natural waters are separated after their ultrafiltration followed by the SPE procedure with Iontosorb Oxin or Iontosorb Salicyl.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2006.03.063