Telomerase Recognizes G-Quadruplex and Linear DNA as Distinct Substrates

Telomeric DNA can assemble into a nonlinear, higher-order conformation known as a G-quadruplex. Here, we demonstrate by electrospray ionization mass spectrometry that the two repeat telomeric sequence d(TGGGGTTGGGGT) from Tetrahymena thermophila gives rise to a novel parallel four-stranded G-quadrup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2007-10, Vol.46 (40), p.11279-11290
Hauptverfasser: Oganesian, Liana, Graham, Mark E, Robinson, Phillip J, Bryan, Tracy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Telomeric DNA can assemble into a nonlinear, higher-order conformation known as a G-quadruplex. Here, we demonstrate by electrospray ionization mass spectrometry that the two repeat telomeric sequence d(TGGGGTTGGGGT) from Tetrahymena thermophila gives rise to a novel parallel four-stranded G-quadruplex in the presence of sodium. The G-quadruplex directly interacts with the catalytic subunit of Tetrahymena telomerase (TERT) with micromolar affinity, and the presence of telomerase RNA is not obligatory for this interaction. Both N- and C-terminal halves of TERT bind the G-quadruplex independently. This G-quadruplex is a robust substrate for both recombinant and cell extract-derived telomerase in vitro. Furthermore, the G-quadruplex weakens the affinity of wild-type telomerase for the incoming nucleotide (dTTP) and likely perturbs the nucleotide binding pocket of the enzyme. In agreement with this, a lysine to alanine substitution at amino acid 538 (K538A) within motif 1 of TERT dramatically reduces the ability of telomerase to extend G-quadruplex but not linear DNA. The K538A mutant retains binding affinity for the quadruplex. This suggests that telomerase undergoes changes in conformation in its active site to specifically accommodate binding and subsequent extension of G-quadruplex DNA. We propose that telomerase recognizes G-quadruplex DNA as a substrate that is distinct from linear DNA.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi700993q