AtHIPM, an Ortholog of the Apple HrpN-Interacting Protein, Is a Negative Regulator of Plant Growth and Mediates the Growth-Enhancing Effect of HrpN in Arabidopsis

HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2007-10, Vol.145 (2), p.426-436
Hauptverfasser: Oh, Chang-Sik, Beer, Steven V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of the effects of HrpN in disease, we sought a HrpN-interacting protein(s) in apple, using a yeast two-hybrid assay. A single positive clone, designated HIPM (HrpN-interacting protein from Malus), was found. HIPM, a 6.5-kD protein, interacted with HrpN in yeast and in vitro. Deletion analysis showed that the N-terminal 198 of 403 amino acids of HrpN are required for interaction with HIPM. HIPM orthologs were found in Arabidopsis (AtHIPM) and rice (Oryza sativa; OsHIPM). HrpN also interacted with AtHIPM in yeast and in vitro. In silico analyses revealed that the three plant proteins contain putative signal peptides and putative transmembrane domains. We showed that both HIPM and AtHIPM have functional signal peptides, and green fluorescent protein-tagged HIPM and AtHIPM associated, in clusters, with plasma membranes. Both HIPM and AtHIPM are expressed constitutively; however, they are expressed more strongly in apple and Arabidopsis flowers than in leaves and stems. The size of AtHIPM knockout mutant plants of Arabidopsis was slightly larger than the wild-type plants. Interestingly, the knockout mutant did not exhibit enhanced plant growth in response to treatment with HrpN. Overexpression of AtHIPM conversely resulted in smaller plants. These results indicate that AtHIPM functions as a negative regulator of plant growth and mediates enhanced growth that results from treatment with HrpN.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.107.103432