Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression
H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 f...
Gespeichert in:
Veröffentlicht in: | The Journal of pathology 2007-10, Vol.213 (2), p.140-151 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | 2 |
container_start_page | 140 |
container_title | The Journal of pathology |
container_volume | 213 |
creator | Jackson, CB Judd, LM Menheniott, TR Kronborg, I Dow, C Yeomans, ND Boussioutas, A Robb, L Giraud, AS |
description | H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130⁷⁵⁷FF mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/path.2218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68331291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68331291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3858-ea81ed2ccddb8d5a543f84e49ed61b5a103631d68f69ac57d4cde5eeb5bbecb3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EotvCgReAnJB6SGvHcWIfVxW0oKqsYFHFyZrYk9Q0cVI7EezbkygrOHGyRv7mn_FnQt4wesEozS4HGB8usozJZ2TDqCpSJVXxnGzmuyzlOStPyGmMPymlSgnxkpywsszykqsN-bGdmg79iDZpBsZp2qF1sJTmMPaPzmMSXeOhbZ1vEjCm7wbwDmPyMHXgkwbiGJxJDHiDIRlC3wSM0fX-FXlRQxvx9fE8I_uPH_ZXN-ntl-tPV9vb1HApZIogGdrMGGsraQWInNcyx1yhLVglgFFecGYLWRcKjChtbiwKxEpUFZqKn5H3a-w8-mnCOOrORYNtCx77KepCcs4yxWbwfAVN6GMMWOshuA7CQTOqF4160agXjTP79hg6VbOQf-TR2wxcrsAv1-Lh_0l6t93fHCPTtcPFEX__7YDwqIuSl0Lf313rr_e7ux37vNfLuu9WvoZeQxNc1N-_ZXT-IioZnR_F_wBnrZfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68331291</pqid></control><display><type>article</type><title>Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Jackson, CB ; Judd, LM ; Menheniott, TR ; Kronborg, I ; Dow, C ; Yeomans, ND ; Boussioutas, A ; Robb, L ; Giraud, AS</creator><creatorcontrib>Jackson, CB ; Judd, LM ; Menheniott, TR ; Kronborg, I ; Dow, C ; Yeomans, ND ; Boussioutas, A ; Robb, L ; Giraud, AS</creatorcontrib><description>H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130⁷⁵⁷FF mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.2218</identifier><identifier>PMID: 17724739</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Adenocarcinoma - microbiology ; Adenocarcinoma - pathology ; Antigens, Bacterial - metabolism ; Bacterial Proteins - metabolism ; Biopsy ; CagA ; Cell Proliferation ; cell signalling ; Disease Progression ; Enzyme Activation ; ERK ; gastric cancer ; Gastric Mucosa - metabolism ; Gastric Mucosa - microbiology ; gastritis ; Gastritis - metabolism ; Gastritis - microbiology ; Gene Expression Regulation, Neoplastic ; Helicobacter Infections - complications ; Helicobacter pylori ; Humans ; IL-11 ; IL-6 ; Interleukin-11 - metabolism ; Interleukin-6 - metabolism ; Interleukin-8 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; Neoplasm Proteins - metabolism ; Proton Pump Inhibitors ; Pyloric Antrum - microbiology ; Pyloric Antrum - pathology ; Reverse Transcriptase Polymerase Chain Reaction - methods ; Signal Transduction - genetics ; Signal Transduction - immunology ; STAT3 ; STAT3 Transcription Factor - metabolism ; stomach ; Stomach Neoplasms - genetics ; Stomach Neoplasms - immunology ; Stomach Neoplasms - microbiology ; Stomach Neoplasms - pathology ; Suppressor of Cytokine Signaling 3 Protein ; Suppressor of Cytokine Signaling Proteins - metabolism</subject><ispartof>The Journal of pathology, 2007-10, Vol.213 (2), p.140-151</ispartof><rights>Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3858-ea81ed2ccddb8d5a543f84e49ed61b5a103631d68f69ac57d4cde5eeb5bbecb3</citedby><cites>FETCH-LOGICAL-c3858-ea81ed2ccddb8d5a543f84e49ed61b5a103631d68f69ac57d4cde5eeb5bbecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.2218$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.2218$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17724739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, CB</creatorcontrib><creatorcontrib>Judd, LM</creatorcontrib><creatorcontrib>Menheniott, TR</creatorcontrib><creatorcontrib>Kronborg, I</creatorcontrib><creatorcontrib>Dow, C</creatorcontrib><creatorcontrib>Yeomans, ND</creatorcontrib><creatorcontrib>Boussioutas, A</creatorcontrib><creatorcontrib>Robb, L</creatorcontrib><creatorcontrib>Giraud, AS</creatorcontrib><title>Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130⁷⁵⁷FF mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - microbiology</subject><subject>Adenocarcinoma - pathology</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biopsy</subject><subject>CagA</subject><subject>Cell Proliferation</subject><subject>cell signalling</subject><subject>Disease Progression</subject><subject>Enzyme Activation</subject><subject>ERK</subject><subject>gastric cancer</subject><subject>Gastric Mucosa - metabolism</subject><subject>Gastric Mucosa - microbiology</subject><subject>gastritis</subject><subject>Gastritis - metabolism</subject><subject>Gastritis - microbiology</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Helicobacter Infections - complications</subject><subject>Helicobacter pylori</subject><subject>Humans</subject><subject>IL-11</subject><subject>IL-6</subject><subject>Interleukin-11 - metabolism</subject><subject>Interleukin-6 - metabolism</subject><subject>Interleukin-8 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Proton Pump Inhibitors</subject><subject>Pyloric Antrum - microbiology</subject><subject>Pyloric Antrum - pathology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>STAT3</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>stomach</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - immunology</subject><subject>Stomach Neoplasms - microbiology</subject><subject>Stomach Neoplasms - pathology</subject><subject>Suppressor of Cytokine Signaling 3 Protein</subject><subject>Suppressor of Cytokine Signaling Proteins - metabolism</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EotvCgReAnJB6SGvHcWIfVxW0oKqsYFHFyZrYk9Q0cVI7EezbkygrOHGyRv7mn_FnQt4wesEozS4HGB8usozJZ2TDqCpSJVXxnGzmuyzlOStPyGmMPymlSgnxkpywsszykqsN-bGdmg79iDZpBsZp2qF1sJTmMPaPzmMSXeOhbZ1vEjCm7wbwDmPyMHXgkwbiGJxJDHiDIRlC3wSM0fX-FXlRQxvx9fE8I_uPH_ZXN-ntl-tPV9vb1HApZIogGdrMGGsraQWInNcyx1yhLVglgFFecGYLWRcKjChtbiwKxEpUFZqKn5H3a-w8-mnCOOrORYNtCx77KepCcs4yxWbwfAVN6GMMWOshuA7CQTOqF4160agXjTP79hg6VbOQf-TR2wxcrsAv1-Lh_0l6t93fHCPTtcPFEX__7YDwqIuSl0Lf313rr_e7ux37vNfLuu9WvoZeQxNc1N-_ZXT-IioZnR_F_wBnrZfF</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Jackson, CB</creator><creator>Judd, LM</creator><creator>Menheniott, TR</creator><creator>Kronborg, I</creator><creator>Dow, C</creator><creator>Yeomans, ND</creator><creator>Boussioutas, A</creator><creator>Robb, L</creator><creator>Giraud, AS</creator><general>John Wiley & Sons, Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200710</creationdate><title>Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression</title><author>Jackson, CB ; Judd, LM ; Menheniott, TR ; Kronborg, I ; Dow, C ; Yeomans, ND ; Boussioutas, A ; Robb, L ; Giraud, AS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3858-ea81ed2ccddb8d5a543f84e49ed61b5a103631d68f69ac57d4cde5eeb5bbecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - microbiology</topic><topic>Adenocarcinoma - pathology</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biopsy</topic><topic>CagA</topic><topic>Cell Proliferation</topic><topic>cell signalling</topic><topic>Disease Progression</topic><topic>Enzyme Activation</topic><topic>ERK</topic><topic>gastric cancer</topic><topic>Gastric Mucosa - metabolism</topic><topic>Gastric Mucosa - microbiology</topic><topic>gastritis</topic><topic>Gastritis - metabolism</topic><topic>Gastritis - microbiology</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Helicobacter Infections - complications</topic><topic>Helicobacter pylori</topic><topic>Humans</topic><topic>IL-11</topic><topic>IL-6</topic><topic>Interleukin-11 - metabolism</topic><topic>Interleukin-6 - metabolism</topic><topic>Interleukin-8 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Proton Pump Inhibitors</topic><topic>Pyloric Antrum - microbiology</topic><topic>Pyloric Antrum - pathology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>STAT3</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>stomach</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - immunology</topic><topic>Stomach Neoplasms - microbiology</topic><topic>Stomach Neoplasms - pathology</topic><topic>Suppressor of Cytokine Signaling 3 Protein</topic><topic>Suppressor of Cytokine Signaling Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, CB</creatorcontrib><creatorcontrib>Judd, LM</creatorcontrib><creatorcontrib>Menheniott, TR</creatorcontrib><creatorcontrib>Kronborg, I</creatorcontrib><creatorcontrib>Dow, C</creatorcontrib><creatorcontrib>Yeomans, ND</creatorcontrib><creatorcontrib>Boussioutas, A</creatorcontrib><creatorcontrib>Robb, L</creatorcontrib><creatorcontrib>Giraud, AS</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, CB</au><au>Judd, LM</au><au>Menheniott, TR</au><au>Kronborg, I</au><au>Dow, C</au><au>Yeomans, ND</au><au>Boussioutas, A</au><au>Robb, L</au><au>Giraud, AS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2007-10</date><risdate>2007</risdate><volume>213</volume><issue>2</issue><spage>140</spage><epage>151</epage><pages>140-151</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130⁷⁵⁷FF mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>17724739</pmid><doi>10.1002/path.2218</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3417 |
ispartof | The Journal of pathology, 2007-10, Vol.213 (2), p.140-151 |
issn | 0022-3417 1096-9896 |
language | eng |
recordid | cdi_proquest_miscellaneous_68331291 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adenocarcinoma - genetics Adenocarcinoma - metabolism Adenocarcinoma - microbiology Adenocarcinoma - pathology Antigens, Bacterial - metabolism Bacterial Proteins - metabolism Biopsy CagA Cell Proliferation cell signalling Disease Progression Enzyme Activation ERK gastric cancer Gastric Mucosa - metabolism Gastric Mucosa - microbiology gastritis Gastritis - metabolism Gastritis - microbiology Gene Expression Regulation, Neoplastic Helicobacter Infections - complications Helicobacter pylori Humans IL-11 IL-6 Interleukin-11 - metabolism Interleukin-6 - metabolism Interleukin-8 - metabolism Mitogen-Activated Protein Kinase 3 - metabolism Neoplasm Proteins - metabolism Proton Pump Inhibitors Pyloric Antrum - microbiology Pyloric Antrum - pathology Reverse Transcriptase Polymerase Chain Reaction - methods Signal Transduction - genetics Signal Transduction - immunology STAT3 STAT3 Transcription Factor - metabolism stomach Stomach Neoplasms - genetics Stomach Neoplasms - immunology Stomach Neoplasms - microbiology Stomach Neoplasms - pathology Suppressor of Cytokine Signaling 3 Protein Suppressor of Cytokine Signaling Proteins - metabolism |
title | Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20gp130-mediated%20cytokine%20signalling%20accompanies%20human%20gastric%20cancer%20progression&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Jackson,%20CB&rft.date=2007-10&rft.volume=213&rft.issue=2&rft.spage=140&rft.epage=151&rft.pages=140-151&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.2218&rft_dat=%3Cproquest_cross%3E68331291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68331291&rft_id=info:pmid/17724739&rfr_iscdi=true |