Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression

H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2007-10, Vol.213 (2), p.140-151
Hauptverfasser: Jackson, CB, Judd, LM, Menheniott, TR, Kronborg, I, Dow, C, Yeomans, ND, Boussioutas, A, Robb, L, Giraud, AS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130⁷⁵⁷FF mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
ISSN:0022-3417
1096-9896
DOI:10.1002/path.2218