Drop formation by thermal fluctuations at an ultralow surface tension

We present experimental evidence that drop breakup is caused by thermal noise in a system with a surface tension that is more than 10(6) times smaller than that of water. We observe that at very small scales classical hydrodynamics breaks down and the characteristic signatures of pinch-off due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2006-12, Vol.97 (24), p.244502-244502, Article 244502
Hauptverfasser: Hennequin, Y, Aarts, D G A L, van der Wiel, J H, Wegdam, G, Eggers, J, Lekkerkerker, H N W, Bonn, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present experimental evidence that drop breakup is caused by thermal noise in a system with a surface tension that is more than 10(6) times smaller than that of water. We observe that at very small scales classical hydrodynamics breaks down and the characteristic signatures of pinch-off due to thermal noise are observed. Surprisingly, the noise makes the drop size distribution more uniform, by suppressing the formation of satellite droplets of the smallest sizes. The crossover between deterministic hydrodynamic motion and stochastic thermally driven motion has repercussions for our understanding of small-scale hydrodynamics, important in many problems such as micro- or nanofluidics and interfacial singularities.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.97.244502