Distal truncation of KCC3 in non-French Canadian HMSN/ACC families

Hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC) is a severe and progressive autosomal recessive polyneuropathy. Mutations in the potassium-chloride cotransporter 3 gene (KCC3) were identified as responsible for HMSN/ACC in the French Canadian (FC) population....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology 2007-09, Vol.69 (13), p.1350-1355
Hauptverfasser: Salin-Cantegrel, A, Rivière, J-B, Dupré, N, Charron, F M, Shekarabi, M, Karéméra, L, Gaspar, C, Horst, J, Tekin, M, Deda, G, Krause, A, Lippert, M M, Willemsen, M A A P, Jarrar, R, Lapointe, J-Y, Rouleau, G A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC) is a severe and progressive autosomal recessive polyneuropathy. Mutations in the potassium-chloride cotransporter 3 gene (KCC3) were identified as responsible for HMSN/ACC in the French Canadian (FC) population. In the present study, the authors were interested in finding new mutations in non-FC populations, assessing the activity of mutant proteins and refining genotype-phenotype correlations. The authors screened KCC3 for mutations using direct sequencing in six non-FC HMSN/ACC families. They then assessed the functionality of the most common mutant protein using a flux assay in Xenopus laevis oocytes. The authors identified mutations in exon 22 of KCC3: a novel mutation (del + 2994-3003; E1015X) in one family, as well as a known mutation (3031C-->T; R1011X) found in five unrelated families and associated with two different haplotypes. The function of the cotransporter was abolished, although a limited amount of mutant proteins were correctly localized at the membrane. KCC3 mutations in exon 22 constitute a recurrent mutation site for hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), regardless of ethnic origin, and are the most common cause of HMSN/ACC in the non-French Canadian (FC) families analyzed so far. Therefore, for genetic analysis, exon 22 screening should be prioritized in non-FC populations. Finally, the R1011X mutation leads to the abrogation of KCC3's function in Xenopus laevis oocytes, likely due to impaired transit of the cotransporter.
ISSN:0028-3878
1526-632X
DOI:10.1212/01.wnl.0000291779.35643.15