Centralised or decentralised sanitation in Swedish summerhouse areas in transition to permanent living?

The standard of wastewater management is high in Sweden. Around 90% of the population is connected to central wastewater treatment plants with high requirements of nutrients removal; however, still the problem with algae blooms in the Baltic Sea exists. The aim of the VeVa project was to develop a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2007-01, Vol.56 (5), p.157-164
Hauptverfasser: Kärrman, E, Erlandsson, A, Hellström, D, Björlenius, B, Tidåker, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The standard of wastewater management is high in Sweden. Around 90% of the population is connected to central wastewater treatment plants with high requirements of nutrients removal; however, still the problem with algae blooms in the Baltic Sea exists. The aim of the VeVa project was to develop a simple and user-friendly Excel-based model to support environmental decisions of how to select wastewater systems for housing areas where no central sewer system exists. The VeVa model deals with two types of environmental issues: substance flow analysis and energy analysis. Six system structures were studied for the transition area Lillängsdal in Värmdö municipality sorted in three categories: 1) on-site systems for single households; 2) local collective systems; 3) connection to central systems. All studied system structures, except for a Sand filter system, fulfilled the goals of reducing phosphorus and BOD7 according to Swedish guidelines for on-site systems in sensitive areas. All studied systems, except for the Sand filter system, have the potential to fulfil the Swedish National Environmental goal to recycle 60% phosphorus to productive land. The systems with central wastewater treatment plant and local wastewater treatment are the most energy efficient alternatives that also fulfil the requirements of discharges and environmental goals regarding phosphorus recycling.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2007.568