Proton-Detected Solid-State NMR Spectroscopy of Fully Protonated Proteins at 40 kHz Magic-Angle Spinning
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5−10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C an...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2007-09, Vol.129 (38), p.11791-11801 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5−10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with ∼30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with ∼100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 ± 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 ± 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja073462m |