Magnetoencephalography: in search of neural processes for visual motion information

Magnetoencephalography (MEG) has become a standard approach to the investigation of human brain functions. This review starts with a brief review of the human visual system and studies on visual motion detection mechanisms is followed by the presentation of MEG studies that have contributed to the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neurobiology 2006-12, Vol.80 (5), p.219-240
1. Verfasser: Kaneoke, Yoshiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetoencephalography (MEG) has become a standard approach to the investigation of human brain functions. This review starts with a brief review of the human visual system and studies on visual motion detection mechanisms is followed by the presentation of MEG studies that have contributed to the field. Emphasis is placed on the fact that because the neural activities measured in functional magnetic resonance imaging (fMRI) differ substantially from those measured in MEG--fMRI data cannot be used directly to estimate MEG signal sources. The basic ideas behind the methods of signal processing and analyses generally used in MEG studies are described and theoretical considerations of the neural mechanisms determining MEG response latency and amplitude changes are discussed. Here, scalar fields theory is proposed to explain MEG responses to incoherent motions, and the ways in which detection of complex motions such as transparency, rotation and expansion can be explained by this theory are also presented. Relationships between human behavioral reaction time and MEG response latency suggest a new concept underlying the reasons why humans are late in detecting slow motion.
ISSN:0301-0082
DOI:10.1016/j.pneurobio.2006.10.001