Vibrational structure, spin-orbit splitting, and bond dissociation energy of Cl2+(X2 Pi g) studied by zero kinetic energy photoelectron spectroscopy and ion-pair formation imaging method
The isotopomer-resolved vibrational and spin-orbit energy structures of Cl(2) (+)(X (2)Pi(g)) have been studied by one-photon zero kinetic energy photoelectron spectroscopy. The spin-orbit energy splitting for the ground vibrational state is determined as 717.7+/-1.5 cm(-1), which greatly improves o...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2007-09, Vol.127 (10), p.104307-104307 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The isotopomer-resolved vibrational and spin-orbit energy structures of Cl(2) (+)(X (2)Pi(g)) have been studied by one-photon zero kinetic energy photoelectron spectroscopy. The spin-orbit energy splitting for the ground vibrational state is determined as 717.7+/-1.5 cm(-1), which greatly improves on the accuracy of the previously reported data. This value is found to be in good agreement with the ab initio quantum chemical calculation taking account of the inner shell electron correlation. The first adiabatic ionization energy (IE) of Cl(2) is determined as 92 645.9+/-1.0 cm(-1). Using the ion-pair formation imaging method to discriminate signals of Cl(+)((1)D(2)) from those of Cl(+)((3)P(j)), the threshold for ion-pair (E(tipp)) production, Cl(+)((1)D(2))+Cl(-)((1)S(0)) |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2772273 |