Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants

Finite-difference numerical simulation of ultrasound propagation in complex media such as cancellous bone represents a fertile alternative to analytical approaches because it can manage the complex 3D bone structure by coupling the numerical computation with 3D numerical models of bone microarchitec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2006-12, Vol.44, p.e289-e294
Hauptverfasser: Haı¨at, G., Padilla, F., Barkmann, R., Gluer, C.-C., Laugier, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finite-difference numerical simulation of ultrasound propagation in complex media such as cancellous bone represents a fertile alternative to analytical approaches because it can manage the complex 3D bone structure by coupling the numerical computation with 3D numerical models of bone microarchitecture obtained from high-resolution imaging modalities. The objective of this work was to assess in silico the sensitivity of ultrasound parameters to controlled changes of microarchitecture and variation of elastic constants. The simulation software uses a finite-difference approach based on the Virieux numerical scheme. An incident plane wave was propagated through a volume of bone of approximately 5 × 5 × 8 mm 3. The volumes were reconstructed from high-resolution micro-computed tomography data. An iterative numerical scenario of “virtual osteoporosis” was implemented using a dedicated image processing algorithm in order to modify the initial 3D microstructures. Numerical computations of wave propagation were performed at each step of the process. The sensitivity to bone material properties was also tested by changing the elastic constants of bone tissue. Our results suggest that ultrasonic variables (slope of the frequency-dependent attenuation coefficient and speed of sound) are mostly influenced by bone volume fraction. However, material properties and structure also appear to play a role. The impact of modifications of the stiffness coefficients remained lower than the variability caused by structural variations. This study emphasizes the potential of numerical computations tools coupled to realistic 3D structures to elucidate the physical mechanisms of interaction between ultrasound and bone structure and to assess the sensitivity of ultrasound variables to different bone properties.
ISSN:0041-624X
1874-9968
DOI:10.1016/j.ultras.2006.06.015